博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
tensorflow1.12 queue 笔记
阅读量:4969 次
发布时间:2019-06-12

本文共 4379 字,大约阅读时间需要 14 分钟。

 

主要参考:https://www.tensorflow.org/api_guides/python/threading_and_queues#Queue_usage_overview

 

自动方式

For most use cases, the automatic thread startup and management provided by tf.train.MonitoredSession is sufficient. In the rare case that it is not, TensorFlow provides tools for manually managing your threads and queues.

与tf.read_file()、tf.image.decode_jpeg()、tfrecord API等函数配合,可以实现自动图片流并行读取

 

import tensorflow as tfdef simple_shuffle_batch(source, capacity, batch_size=10):    # Create a random shuffle queue.    queue = tf.RandomShuffleQueue(capacity=capacity,                                  min_after_dequeue=int(0.9*capacity),                                  shapes=source.shape, dtypes=source.dtype)    # Create an op to enqueue one item.    enqueue = queue.enqueue(source)    # Create a queue runner that, when started, will launch 4 threads applying    # that enqueue op.    num_threads = 4    qr = tf.train.QueueRunner(queue, [enqueue] * num_threads)    # Register the queue runner so it can be found and started by    # tf.train.start_queue_runners later (the threads are not launched yet).    tf.train.add_queue_runner(qr)    # Create an op to dequeue a batch    return queue.dequeue_many(batch_size)# create a dataset that counts from 0 to 99input = tf.constant(list(range(100)))input = tf.data.Dataset.from_tensor_slices(input)input = input.make_one_shot_iterator().get_next()# Create a slightly shuffled batch from the sorted elementsget_batch = simple_shuffle_batch(input, capacity=20)# `MonitoredSession` will start and manage the `QueueRunner` threads.with tf.train.MonitoredSession() as sess:    # Since the `QueueRunners` have been started, data is available in the    # queue, so the `sess.run(get_batch)` call will not hang.    while not sess.should_stop():        print(sess.run(get_batch))

 

手动方式

通过官方例程微调(以便能正常运行)得到,目前能运行,结果也正确,但是运行警告,尚未解决。

WARNING:tensorflow:From /home/work/Downloads/python_scripts/tensorflow_example/test_tf_queue_manual.py:52: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.

Instructions for updating:
To construct input pipelines, use the `tf.data` module.

import tensorflow as tf# Using Python's threading library.import threadingimport timebatch_size = 10thread_num = 3print("-" * 50)def MyLoop(coord, id):    step = 0    while not coord.should_stop():        step += 1        print("thread id: %02d, step: %02d, ...do something..." %(id, step))        time.sleep(0.01)        if step >= 5:            coord.request_stop()# Main thread: create a coordinator.coord = tf.train.Coordinator()# Create thread_num threads that run 'MyLoop()'threads = [threading.Thread(target=MyLoop, args=(coord,i)) for i in range(thread_num)]# Start the threads and wait for all of them to stop.for t in threads:    t.start()coord.join(threads)print("-" * 50)# create a dataset that counts from 0 to 99example = tf.constant(list(range(100)))example = tf.data.Dataset.from_tensor_slices(example)example = example.make_one_shot_iterator().get_next()# Create a queue, and an op that enqueues examples one at a time in the queue.queue = tf.RandomShuffleQueue(capacity=20,                              min_after_dequeue=int(0.9*20),                              shapes=example.shape,                              dtypes=example.dtype)enqueue_op = queue.enqueue(example)# Create a training graph that starts by dequeueing a batch of examples.inputs = queue.dequeue_many(batch_size)train_op = inputs # ...use 'inputs' to build the training part of the graph...# Create a queue runner that will run thread_num threads in parallel to enqueue examples.qr = tf.train.QueueRunner(queue, [enqueue_op] * thread_num)# Launch the graph.sess = tf.Session()# Create a coordinator, launch the queue runner threads.coord = tf.train.Coordinator()enqueue_threads = qr.create_threads(sess, coord=coord, start=True)# Run the training loop, controlling termination with the coordinator.try:    for step in range(1000000):        if coord.should_stop():            break        y = sess.run(train_op)        print(step, ",  y =", y)except Exception as e:    # Report exceptions to the coordinator.    coord.request_stop(e)finally:    # Terminate as usual. It is safe to call `coord.request_stop()` twice.    coord.request_stop()    coord.join(threads)

 

转载于:https://www.cnblogs.com/xbit/p/10083516.html

你可能感兴趣的文章
MonkeyRecorder
查看>>
Maven概述
查看>>
网页表单提交、备份文件泄露
查看>>
ibatis相关包下载网站
查看>>
php设计模式:工厂模式
查看>>
C#实现窗口最小化到系统托盘
查看>>
复利计算
查看>>
2、指定父对象
查看>>
Docker启动的问题解决笔记
查看>>
20165220 我期望的师生关系
查看>>
Oracle wallet 配置 说明
查看>>
lodash 源码解读 _.dropWhile( obj, fn)
查看>>
POJ - 1655 Balancing Act (树的重心)
查看>>
.Net 程序集 签名工具sn.exe 密钥对SNK文件 最基本的用法
查看>>
ExtJs5入门_HelloWorld
查看>>
python笔记6-%u60A0和\u60a0类似unicode解码
查看>>
Libevent:4event loop
查看>>
python 简单图像处理(11) 空间域图像锐化(边缘检测)
查看>>
Nginx 编译安装
查看>>
通过局域网让别人访问自己的电脑项目
查看>>